Find us on:

Research

Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.

Title
Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.
Publication Type
Journal Article
Research Type
human,lab
Reported as
Date
August 02, 2017
Authors
Ludwig MD, Zagon IS, McLaughlin PJ
Institution
Pennsylvania State University
Link
Abstract

Low-dose naltrexone is a widely used off-label therapeutic prescribed for a variety of immune-related disorders. The mechanism underlying low-dose naltrexone’s efficacy for fatigue, Crohn’s disease, fibromyalgia, and multiple sclerosis is, in part, intermittent blockade of opioid receptors followed by upregulation of endogenous opioids. Short, intermittent blockade by naltrexone specifically blocks the opioid growth factor receptor resulting in biofeedback events that increase production of the endogenous opioid growth factor (OGF) (chemically termed [Met5]-enkephalin) facilitating interactions between opioid growth factor and opioid growth factor receptor that ultimately, result in inhibited cell proliferation. Preclinical studies have reported that enkephalin levels are deficient in animal models of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our hypothesis is that serum enkephalin levels are diminished in humans with multiple sclerosis and experimental autoimmune encephalomyelitis mice, and that change in serum opioid growth factor levels may serve as a reasonable candidate biomarker for the onset of experimental autoimmune encephalomyelitis and response to therapy. To address this, we designed a two-part study to measure endogenous opioids in multiple sclerosis patients, and to investigate the temporal pattern of decline in serum enkephalin concentrations in mice with chronic progressive experimental autoimmune encephalomyelitis and treated with low-dose naltrexone. For comparison, we investigated whether low-dose naltrexone exposure in normal mice also resulted in altered enkephalin levels. In both animal models, we monitored tactile and heat sensitivity, as well as differential white blood cell counts as indicators of inflammation. Serum [Met5]-enkephalin levels were lower in humans with multiple sclerosis relative to non-multiple sclerosis patients, and low-dose naltrexone restored their levels. In experimental autoimmune encephalomyelitis mice, [Met5]-enkephalin levels were depressed prior to the appearance of clinical disease, and were restored with low-dose naltrexone treatment. Low-dose naltrexone therapy had no effect on serum [Met5]-enkephalin or β-endorphin in normal mice. Thus, [Met5]-enkephalin (i.e. opioid growth factor) may be a reasonable candidate biomarker for multiple sclerosis, and may signal new pathways for treatment of autoimmune disorders.